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1. Introduction

It has been recognized that the dynamic behavior of structural mechanical components can be
altered by local stiffness or mass changes. The monitoring of the variations of dynamic
parameters can be used as a useful warning in diagnosing presence, location and extent of
damage. Due to several advantages that can be expected with respect to other non-destructive
evaluation (NDE) techniques, an enormous amount of investigations have been carried out in the
last decades [1–3]. Among all the proposed methodologies certain analytical models that try to
correlate the modal data variations with local damage play a significant role. This note deals with
the model of Christides and Barr [4] that was subsequently reconsidered by Shen and Pierre [5].
In particular, Christides and Barr [4] introduced a theoretical model for uniform Bernoulli–

Euler beams containing pairs of symmetric cracks. Namely, the differential equation of motion
and the associated boundary conditions were consistently obtained through a variational
statement. Such a theory was applied to the case of a beam simply supported at both ends
containing a symmetric pair of open cracks in the middle of the beam. The decrease of the
fundamental frequency, as a result of the cracks, was evaluated from a numerical and
experimental point of view. The close agreement between analytical predicted frequency ratio
(frequencydamaged beam/frequencyundamaged beam) and experimental ratios corroborated the proposed
analytical model. Christides and Barr [4] were able to resolve the analytical problem by adopting a
two-term trial function in the frame of the Rayleigh–Ritz method.
The model of Christides and Barr [4] was later reconsidered by Shen and Pierre [5], who used

the Christides and Barr theory to accurately evaluate natural frequencies and mode shapes of
cracked beams. In particular, Shen and Pierre [5] aimed at solving the boundary value problem
introduced in Ref. [4] through a Galerkin procedure [6,7] in which the cracked beam deflection
was expanded in a series of functions. They, however, pointed out that the convergence of
Galerkin’s procedure that is very slow for this type of problem and that, therefore, a new
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technique which increased the convergence speed was needed. The technique used in Ref. [5], to
increase the convergence speed, consisted of adding up a supplementary function, having the same
continuity properties as the exact solution of the eigenvalue problem, to a classical set of suitable
infinitely differentiable co-ordinate functions. Numerical simulations showed how the conver-
gence could thus be improved with respect to that based on using infinitely differentiable
functions. Indeed, a minor number of co-ordinate functions ðB1

3
Þ was needed to solve the

boundary value problem at a fixed convergence speed. The minor number of co-ordinate
functions did not limit the application of Christides and Barr’s model that was used to investigate
different test cases [5].
This note aims at illustrating that the convergence speed of Galerkin’s method, applied to the

boundary value problem of Christides and Barr theory, can even be improved in comparison with
the technique presented by Shen and Pierre [5]. Such an increased performance is obtained
through recent global piece-wise smooth functions [8,9] (GPSFs). Namely, the convergence speed
of Galerkin’s method can be increased by a factor >2 with respect to the convergence speed based
on the Shen and Pierre technique [5] referred to the natural frequencies of a cracked beam.
Therefore, this short note shows the utility of certain GPSFs, recently introduced by Messina
[8,9], in all those contexts where continuous and discrete modelling aspects must coexist in the
same problem.

2. Theoretical description of the boundary value problem

2.1. A brief review of the cracked beam theory

The continuous model of a transversally vibrating beam presented by Christides and Barr [4]
consists of a Bernoulli–Euler model extracted from the three-dimensional theory through Hu–
Washizu–Barr variational equation [10]. The variational equation [4,5,10], allowing independent
assumptions regarding displacement, velocities, strain and stress fields, provides, in the case of
rectangular section beams (Fig. 1), a differential equation of free motion, which, separated in the

Fig. 1. Geometry and nomenclature of a cracked beam.
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spatial domain (x), reduces to the following eigenvalue problem:

ðEIQ #w00Þ00 � o2rA #w ¼ 0 ð1Þ

with associated conditions at the ends. The symbols illustrated in Eq. (1) correspond to the
following definitions:

QðxÞ ¼ ½1þ ðm � 1Þexpð�2ajx � xcj=dÞ	�1; 1=m ¼ ð1� CRÞ3; CR ¼ a=d; ð2Þ

where EI, o, r, A and #w correspond to the bending stiffness, the circular frequency, the volumetric
density, the transverse sectional area and the eigenfunctions, respectively. The term a is a
dimensionless positive constant and constitutes a calibration parameter for the stress decay from
the crack tip. For the purpose of the present note a is assumed to be 1.936 whilst xc/L=0.5 [5].
Eqs. (1) and (2) highlight that a uniform undamaged beam is characterized by Q(x)=1 and

CR=0, in the sense that the presence of a crack locally modifies the bending stiffness through
Q(x). As it was pointed out by Shen and Pierre [5], the crack also modifies the continuity
characteristics of the eigenfunctions in Eq. (1), which may be expected to be only C2 ( #w is
continuous up to the second derivative) in the variable space.

2.2. Galerkin solution proposed by Shen and Pierre

The continuity characteristics of the eigenfunctions associated with eigenvalue problem (1), as
pointed out by Shen and Pierre [5], significantly deteriorate the convergence of the Galerkin
procedure.
In particular, if the following expansion is considered in Eq. (1) and Galerkin’s method applied:

#wðxÞ ¼
XN

i¼1

aifðxÞi ð3Þ

a discrete eigenvalue problem is obtained

Ka ¼ o2Ma; ð4Þ

where a=(a1, y, aN)
T and K and M are the stiffness and mass matrices depending on the base

used in expansion (3). The eigenvalues and eigenvectors evaluated through Eq. (4) analytically
furnish approximated eigenvalues and eigenfunctions through Eq. (3). Such an approximation
can provide exact quantities whenever a sufficiently high number (N) of co-odinate functions
fðxÞi; that are compatible with boundary conditions, is considered.
With regard to a cracked beam, simply supported at both ends (SS), the convergence speed

deteriorates when the C2-eigenfunctions ð #wÞ are expanded in Eq. (3) on a base of infinitely
differentiable functions (e.g. fðxÞi ¼ sinðipx=LÞ).
Therefore, Shen and Pierre [5] suggested expanding the eigenfunctions by adding a two-term

polynomial, having the continuity characteristics of the unknown eigenfunctions, to the base of
infinitely differentiable functions (3). The two-terms polynomial proposed by Shen and Pierre [5]
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corresponds to the following function:

fðxÞ0 ¼
x2c � 3xc þ 2
� �

xþ 1�
1

xc

� �
x3; 0oxpxc;

x3 � 3x2 þ ð2þ x2cÞx� x2c ; xcoxp1;

8><
>: ð5Þ

where x is indicating the dimensionless x-co-ordinate (x/L). Function (5) not only fulfills the
boundary conditions related to an SS beam, but it is also continuous up to the second derivative.
Therefore, in the technique proposed by Shen and Pierre [5] the eigenfunctions are expanded as

#wðxÞ ¼ a0fðxÞ0 þ
XN

i¼1

aifðxÞi: ð6Þ

2.3. Galerkin solution based on GPSFs

In Ref. [8] a novel set of functions was introduced. Such an effort was prompted by the
requirement to study the free vibrations of multilayered plates by modelling the relevant
displacement and stress quantities in a global sense through the thickness of the plate. The
performances of this set of functions were shown from a mathematical point of view
(approximating certain piece-wise differentiable continuous functions in the mean) as well as in
the frame of a boundary value problem (i.e., studying certain simply supported freely vibrating
plates). In this latter case the use of these functions (the so-called global piece-wise smooth
functions: GPSFs) allowed an efficient approach to the three-dimensional exact results. Based on
the encouraging results achieved in Refs. [8,9], it is here shown how the GPSFs can serve different
areas where continuous and discrete modelling aspects must coexist in the same problem.
The dimensionless domain with which this note deals with is [0, 1]. The crack is located in the

middle of an SS-beam. The co-ordinate functions are herein created domain by domain, firstly in
order to fulfill the boundary conditions and secondly to fulfill the continuity requirements at the
cracked section of the beam. In particular, in the domain [0, 1] a polynomial base made up of co-
ordinate functions constrained to fulfill the following conditions:

jð0Þi ¼ 0; jð0Þ00i ¼ 0 ð7Þ

can be extracted from a classical polynomial base by eliminating constant and second order terms:

jðxÞ1 ¼ x; jðxÞ2 ¼ xþ x3; jðxÞ3 ¼ xþ x3 þ x4; jðxÞ4 ¼ xþ x3 þ x4 þ x5;y : ð8Þ

Moreover, in order to have polynomials with similar magnitude in [0 1], sequence (8) can also be
made orthonormal. In this latter respect sequence (9) illustrates the first three orthogonal
polynomials that were obtained through a symbolic software implementation of the Gram–
Schmidt orthogonalization process:

*jðxÞ1 ¼
ffiffiffi
3

p
x; *jðxÞ2 ¼ ð�3xþ 5x3Þ

ffiffiffi
7

p
=2; *jðxÞ3 ¼ ð5x� 35 x3 þ 32x4Þ3=2;y : ð9Þ

which still preserves conditions (7).
The polynomials (9) can be re-adapted in the variable space [0, xc] by substituting x with x/xc.

They (9) can also be adapted in [xc, 1], as its mirror image, by substituting x with (1�x)/(1�xc).
The mentioned local polynomials adapted in the subdomains [0, xc] and [xc, 1] can be joined
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through the scaling and graph-based process illustrated in Ref. [8] to identify independent global
functional components (f(x)i), which fulfill the following external and internal boundary
conditions:

fð0Þi ¼ 0; fð0Þ00i ¼ 0;

fð1Þi ¼ 0; fð1Þ00i ¼ 0;

fðx�c Þi ¼ fðxþc Þi: ð10Þ

In order to clarify the concept, the first three polynomial terms illustrated in Eq. (9) can be
considered. From these three polynomials, a set of five (2(3�1)+1) GPSFs can be identified to
constitute a partial base in [0, 1] as shown in Fig. 2. The selection carried out for the five
functional components of Fig. 2 also corresponds to the graph of Fig. 3, which illustrates the local
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Fig. 2. A set of five linearly independent global piece-wise smooth functions: 3 functional components in 2 subdomains.
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functional components (9) (adapted in the aforementioned two sub domains) and its joining by
nodes and branches, respectively.
However, the GPSFs associated with the graph of Fig. 3 and fulfilling conditions (7) are still not

an appropriate functional base (for N-N) in the Galerkin procedure for solving eigenvalue
problem (1). Indeed, the set of GPSFs still needs to be C2 in xc. Here such a requirement is carried
out by adding to every GPSF, in the second subdomain (i.e. [xc, 1]), a fourth order polynomial
y(x) that satisfies five conditions: continuity of the first and second derivative in xc, y(1)=y(xc)=0

Table 2

Decrease of the first three natural frequencies with respect to the undamaged beam (L/2d=18.11, a=1.936, CR=1/2,

xc=L/2)

N GPSFs SP-method S-method

I II III I II III I II III

9 0.9433 0.9997 0.9493 0.9443 0.9997 0.9497 0.9614 0.9997 0.9644

11 0.9354 0.9997 0.9424 0.9388 0.9997 0.9452 0.9589 0.9997 0.9622

13 0.9285 0.9997 0.9369 0.9340 0.9997 0.9414 0.9564 0.9997 0.9600

15 0.9231 0.9997 0.9326 0.9300 0.9997 0.9381 0.9538 0.9997 0.9578

17 0.9191 0.9997 0.9296 0.9267 0.9997 0.9355 0.9513 0.9997 0.9557

19 0.9165 0.9997 0.9275 0.9239 0.9997 0.9333 0.9487 0.9997 0.9535

21 0.9148 0.9996 0.9263 0.9217 0.9997 0.9316 0.9463 0.9997 0.9515

23 0.9139 0.9996 0.9255 0.9199 0.9997 0.9302 0.9439 0.9997 0.9495

25 0.9134 0.9996 0.9251 0.9185 0.9997 0.9291 0.9416 0.9997 0.9476

27 0.9131 0.9996 0.9249 0.9173 0.9997 0.9282 0.9394 0.9997 0.9458

29 0.9130 0.9996 0.9248 0.9164 0.9997 0.9275 0.9374 0.9997 0.9441

31 0.9129 0.9996 0.9248 0.9157 0.9997 0.9269 0.9355 0.9997 0.9426

33 0.9129 0.9996 0.9248 0.9152 0.9997 0.9265 0.9337 0.9997 0.9411

40 0.9138 0.9997 0.9255 0.9292 0.9996 0.9374

50 0.9132 0.9996 0.9250 0.9237 0.9996 0.9331

60 0.9130 0.9996 0.9249 0.9202 0.9996 0.9304

70 0.9129 0.9996 0.9248 0.9179 0.9996 0.9286

80 0.9129 0.9996 0.9248 0.9165 0.9996 0.9275

90 0.9155 0.9996 0.9267

100 0.9148 0.9996 0.9262

110 0.9144 0.9996 0.9259

120 0.9140 0.9996 0.9256

130 0.9138 0.9996 0.9254

140 0.9136 0.9996 0.9253

150 0.9135 0.9996 0.9252

Table 1

Nomenclature and expansions used in Galerkin’s method

Method and acronym Expansion Functional components (fðxÞi)

Classical sinusoidal base: S #wðxÞ ¼
PN

i¼1 aifðxÞi sinðipx=LÞ
Shen and Pierre [5]: SP #wðxÞ ¼ a0fðxÞ0 þ

PN
i¼1 aifðxÞi f(x)0: Eq. (5) with xc=0.5; sinðipx=LÞ

Present method: GPSFs #wðxÞ ¼
PN

i¼1 aifðxÞi fðxÞi: GPSFs
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and y(1)00=0. This assures the C2-continuity in xc for all GPSFs and preserves the external
boundary conditions. However, in such a circumstance, f(x)1, f(x)4 and f(x)5 (Fig. 2) become
linearly dependent on the degree of the added polynomial y(x) and, therefore, two of those three
GPSFs were not considered with expansion (3) in Galerkin’s method.

3. Numerical comparisons and closure

In the following comparisons the results were achieved through Galerkin’s method as indicated
in Table 1.
Table 2 shows the comparison between the aforementioned three methods. This table illustrates a

convergence test on the lowest three frequencies when a mid-span symmetric crack is present. All
results are presented in terms of frequency ratio (frequencydamaged beam /frequencyundamaged beam).
A perusal of Table 2 firstly confirms what Shen and Pierre [5] reported: the convergence speed is

highly deteriorated when the S-method is considered. The SP-method is able to improve the
performance of Galerkin’s method with a factor around 3. Indeed 50 terms in SP-method (0.9132,
0.9996, 0.9250) provide an accuracy comparable to that achieved with the S-method with 150
terms (0.9135, 0.9996, 0.9252). However, Table 2 illustrates how the GPSFs are able to
perform even better with respect to the SP-method. Indeed 31 terms of GPSFs are able to achieve
identical frequency ratios (0.9129, 0.9996, 0.9248) achieved through the SP-method with 70 terms.
Thus the GPSFs provide an increase in the convergence speed related to the SP-method of a factor
about 2.
The frequency ratio concerning the fundamental and the third frequency (the most sensitive to a

mid-span crack of an SS-beam) is also illustrated in Fig. 4. which clarifies the advantages obtained
in Galerkin’s method when the SP-method and, even better, when GPSFs are used.
It is concluded that the GPSFs are able to perform better than the other analyzed methods

because they constitute a complete base to global approximation in the infinite functional space
Cx-functions.
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Fig. 4. Decrease of (a) the fundamental and (b) the third natural frequency: comparison of different methods (—,

GPSFs, - - - SP; —, S).
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